

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified

IARJSET

Vol. 3. Issue 12. December 2016

Smart Cities: A Study of Prospects **Beyond Information and Communication** Technology (ICT)

Debasis Sarkar¹ and Ridham Viramgami²

Associate Professor and Head, Dept of Civil Engg, School of Technology, Pandit Deendayal Petroleum University,

Gandhinagar, Gujarat, India¹

Former M. Tech Student, Infrastructure Engg & Management, Pandit Deendayal Petroleum University, Gandhinagar²

Abstract: Smart city development primarily pertains to the contributions from parameters associated with Information and Communication Technology (ICT). ICT which is indicator of smart governance is generally considered to be the major parameter for building a smart city. This paper is an attempt to explore and provide justification for other smart parameters which are also equally important in comparison to ICT in Indian context. This study describes critically the identified parameters of smart city by carrying out opinion survey with professionals. Reponses of opinion survey was analyzed on Likert scale to generate frequency index values. This index values generated were verified by Cronbach's alpha to provide new index values justifying importance of other parameters in comparison to ICT. It has been observed that "smart infrastructure", "smart mobility", "smart governance", "smart environment & smart living", "smart economy" and "sector ranking" are some major parameters that can be considered as equal or even more significant to that of parameters related to ICT for development of smart city. The computed values of Smart Impact Index (SII-KMO) and SII-EV for Ahmedabad are 0.588 and 0.765 respectively. As both these values are greater than 0.5 they are adequately significant. Thus the parameters considered for this study have adequately high impact for development of a smart city like Ahmedabad and should be treated carefully along with other factors associated with ICT.

Keywords: Smart city, Information and Communication Technology (ICT), Smart Impact Index, Frequency index.

I. INTRODUCTION

Economic growth of any nation is dependent on growth of In order to establish this facilities in a city of India proper city, including India. With increasing urbanization, urban norms would be needed so that work can carry on areas will be covering near about 40% of India's properly. population and contribute about 75% of India's GDP by 2030. Therefore comprehensive development will be needed in physical, institutional, social and economic infrastructure.

Definition of smart city is not been established worldwide as of now. This definition varies from city to city, country to country in different manner. Level of development depends upon willingness to change resources within the city. The main objective is to promote cities that provide core infrastructure and give a decent quality of life to its citizens, a clean and sustainable environment to live within.

The core infrastructure elements in a smart city would include, adequate water supply, assured electricity supply, sanitation, including solid waste management, efficient urban mobility and public transport, affordable housing, especially for the poor, robust IT connectivity and digitalization, good governance, especially e-Governance and citizen participation, sustainable environment, safety and security of citizens, particularly women, children and the elderly, and health and education.

II. LITERATURE REVIEW AND CONCEPTUAL FRAMEWORK

Smart cities represent a concept for development of urban model which is used for utilization of human, collective, and technological capital for the development of urban areas. Concept of smart city should be developed properly as there are different nomenclature, context and meanings around globe.

The conceptualization of smart city, therefore, varies from city to city and country to country, depending on the level of development, willingness to change and reform, resources and aspirations of the city residents. A smart city would have a different connotation in India than, say, Europe. Even in India, there is no one way of defining a smart city. Cities which represent a multidisciplinary field, constant change in shape shaped by advancements in technology and urban development can be said to be a smart city in its own concept. In this sense, by tracing the history of smart cities up to the current smart city idea, one

IARJSET

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified

Vol. 3, Issue 12, December 2016

may hope to achieve a better understanding of what it means to be 'smart' in a city context. The impression is often that a smart city is the same as a digital city, and sometimes its meaning is close to that of a sustainable city. (http://www.smartcitymission.com, 3.9.2015)

As per Indian context, smart city would be dealing for the adequacy of infrastructure facility.

The core infrastructure elements in a Smart City would include:

- i. Adequate water supply
- ii. Assured electricity supply,
- iii. Sanitation, including solid waste management,
- iv. Efficient urban mobility and public transport,
- v. affordable housing, especially for the poor,
- vi. Robust IT connectivity and digitalization,
- vii.Good governance, especially e-Governance and citizen participation,
- viii. Sustainable environment,
- ix. Safety and security of citizens, particularly women, children and the elderly.

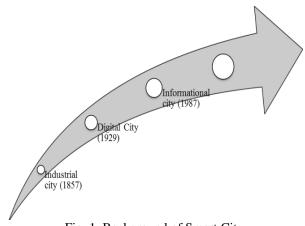
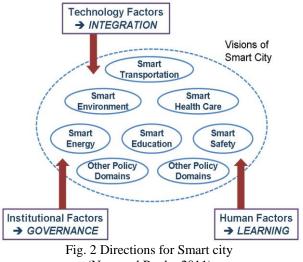



Fig. 1. Background of Smart City (Ahmed and Anguluri, 2014)

Ahmed and Anguluri (2014) in above figure explains about emergence of the types of cities in a time span of about 130 years. "Industrial city" emerged due to the economic crisis in 1857 A.D. This was second technological revolution which gave an up gradation to digital city. In 1929 A.D. "Digital city" evolved as third technological revolution of the world in which computers were brought in to keep in digital data rather than having pile of papers. "Informational city" was conceptualized in 1987 A.D. This gave rise to informational technological revolution. This revolution gave an access to the information on basis of sharing through digital advancement. This gave a boost to economic advancement of various countries in the world. Recently a new term for the cities in various parts of world has evolved as Smart city in 2008 A.D. This is an emergence of new step for technological advancement. An attempt was made to group various parameters of services under one roof. This grouping of services with technology has helped in up gradation of city's image and value.

(Nam and Pardo, 2011)

Nam and Pardo (2011) have explained about integration of technologies to form an efficient smart city. Smart city integrates technologies, systems, infrastructures services, and capabilities into an organic network that is sufficiently complex for unexpected emergent properties to develop. There are challenges as well as opportunities where integrative service of smart city is implemented. The perception of technology in smart city initiatives, stresses integration of systems, infrastructures and services mediated through enabling technologies. Technological innovation is a means to smart city. Information Technology (IT) is just a facilitator for creating a new type of innovative environment, which requires the comprehensive and balanced development of creative innovation-oriented institutions, skills. broadband networks, and virtual collaborative spaces.

Types of Development for Smart City

There are majorly four types of development related to smart city. Area based development components of the smart city deals with:-

- 1. Retrofitting will introduce planning in an existing area to make it in accordance to the smart city objectives, along with other objectives, to make the existing area more efficient and liveable. 500 acres of area would be identified and developed as smart city by consulting citizens of that area. Depending on the existing level of infrastructure services in the identified area and the vision of the residents, the cities will prepare a strategy to become smart. Part of city taking a particular ward level would be defined as smart city.
- 2. Redevelopment will effect a replacement of the existing built-up environment and enable co-creation of a new layout with enhanced infrastructure using mixed land use and increased density. Redevelopment deals for an area of more than 50 acres identified by urban local bodies in consultation with citizens.
- 3. Greenfield development will introduce most of the smart solutions in a previously vacant area (more than 250 acres) using innovative planning, plan financing

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified

Vol. 3. Issue 12. December 2016

and plan implementation tools (e.g. land pooling / land smart cities into two large sections namely, urban futures for this type of area development for smart city.

4. Pan-city development describes the application of the future. The knowledge and innovation economy strand technology, information and data to infrastructure and services better. (http://www.researchgate.net/publication, 18-9-2015).

Zubizarreta et al. (2015) has discussed in their work about "smart city concept: what it is and what it should be" According to them European classification of smart city applications will be reviewed and the relationship between the different European smart classification standards are analyzed. Moreover, in order to see how reality aligns with the theoretical concept of smart cities, the author analyzed 61 applications from 33 smart cities distributed in North America, South America, Europe and Asia. Analyzing the parameters of different cities with European classification system author has reviewed upon the level of integration in parameters as "High", "Medium", "Low", & "No Integration" within parameters.

Angelidou (2015) describes in "smart cities: a conjuncture of four forces" that he has identified the forces shaping the smart city conception and, by doing so, to begin replacing the currently abstract image of what it means to be one. Their work commences by dividing the recent history of

reconstitution) with provision for affordable housing, and the knowledge and innovation economy. The urban especially for the poor. GIFT city is one of the example futures strand shows that technology has always played an important role in forward looking visions about the city of smart solutions for an existing city infrastructure. shows that recent technological advancements have Application of smart solutions will involve the use of introduced a whole new level of knowledge management make and innovation capabilities in the urban context. The research route of this paper eventually allows the identification of the underlying and often forgotten principles of what it means to be 'smart' in an urban context and yields conclusions about strategic planning for the development of smart cities today. Belanche et al. (2015) studied the use of urban services for benefits of smart cities. Halepoto et al. (2015) have carried out a Strengths Weakness Opportunities and Threats (SWOT) analysis for the transformation of a smart city project. The primary category for transformation would include "smart city vision and status assessment", "smart city transformational initiatives" and "smart city development and implementation". Table 1 represents the SWOT analysis carried out by them. It has been observed that developing an intelligent and sustainable city is the way forward. The concept of making city 'smart' is evolving as a strategy to manage urban infrastructure and ease the urbanization challenges. The SWOT analysis has been used as a strategic tool to identify the gap between existing resources and pre-requisites of smart city transformation.

Toble 1	SWOT	Analysis for	Smort City	Transformation	(Halaonoto	at a1 2015
Table 1.	3001	Analysis 101	Smart City	y Transformation	(патеорото	et al., 2013)

Smart City Transformation				
Strengths	Weakness Opportunities		Threats	
Technological innovation & integration	Managerial and organizational issues	Large scale space time & service platform	Lack Standardized framework	
Govt involvement	Cross section co- operation challenges	Handling of multi- source heterogeneous systems	Information security & risk control	
Business opportunities	Lack of multi source & multi temporal data	Institutional interactions	Data privacy & security issues	
Smart is bigger stage of digital and intelligent city	Lack of real time decision mechanism	Innovation and entrepreneourship	Standards and interpretability issues	
Optimized goal	Citizen awareness and involvement	Citizen centric governance	Economic uncertainty	
Application integration platform			Political Components & policy contents	

Chourabi et.al (2012) describes that making a city "smart" increasing use of the concept, this paper proposes a is emerging as a strategy to mitigate the problems framework to understand the concept of smart cities. generated by the urban population growth and rapid These factors form the basis of an integrative framework urbanization. Yet little academic research has sparingly that can be used to examine how local governments are discussed the phenomenon. To close the gap in the envisioning smart city initiatives. The framework suggests literature about smart cities and in response to the directions and agendas for smart city research and outlines

IARJSET

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified

Vol. 3, Issue 12, December 2016

practical implications for government professionals. The 2012 is presented in Table 2. list of smart indicators as indicated by Chourabi et al.,

Table 2 List of Smart Indicators (Chourabi et al., 2012)

Smart Mobility	Smart Environment	Smart Living	
 Local accessibility International accessibility Availability of ICT- infrastructure Sustainable, innovative & safe transport system 	 Pollution Environmental protection Sustainable resource management Attractivity of natural conditions 	 Cultural facilities Health conditions Individual safety Housing quality Equcation facilities Social cohesion Touristic attractivity 	

III. CASE STUDY AND RESEARCH METHODOLOGY

Fig. 1. Principles of Ahmedabad Smart City

Ahmedabad was considered as the study area for this work as it was chosen for primary selection amongst first ten

smart cities from the smart city mission under taken in Atal Mission for Rejuvenation and Urban Transformation (AMRUT) guidelines. Ahmedabad is the administrative headquarters of Ahmedabad district and the seat of the Gujarat High Court. With a population of more than 6.3 million and an extended population of 7.2 million, it is the sixth largest city and seventh largest metropolitan area of India.

These are above mentioned smart city principles adopted by Ahmedabad's authority to produce an efficient example of the retrofit development of smart city. In accordance with the smart city principles adopted by the authority in the study area, principles lying in the category of smart parameters are mentioned in the below table.

Below Table 3, shows the components represented for the selected case in smart city mission. This study adapts these components for selected case. Components comprising with the indicators and their relation to smart city parameters are mentioned in the above table. Table 4 highlights the parameters affecting smart economy, smart people and smart governance.

Table 3 Components of Smar	t City Mission, Ahmedabad
----------------------------	---------------------------

Components	Indicators	Smart Parameters	
Collaborative Governance	Citizen involvement	Smart People	
	Complaint registrations -CCRS		
Sustainable development	Clean energy, Pollution control, Conservation	Smart Environment	
	&Recycling		
Efficient Implication	Implementation, Efficiency across various services	Smart Infrastructure	
Intelligent infrastructure	Transport, Utilities supply, Waste management	Smart Mobility	
Urban Resilience	Climate Resilience, Disaster planning,	Smart Living	

Table 4. Parameters affecting Smart Economy, People and Governance

Smart Economy	Smart People	Smart Governance
• Innovative spirit	 Level of qualification 	 Participation in decision-making
• Entrepreneurship	• Affinity to long learning	 Public & social services
• Economic image & trademarks	Social & ethnic plurality	• Transparent governance

• Participation in public life Open

Vol. 3, Issue 12, December 2016

• Productivity • Flexibility Political strategies & perspectives Flexibility of labor market • Creativity

mindedness

- International embeddeness
- Ability to transform

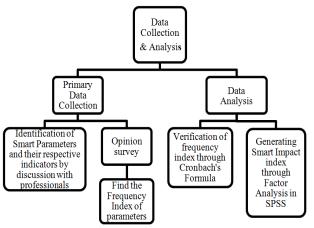


Fig. 2. Research Methodology for Study

The research methodology adopted for the study is presented in Fig. 2. After collection of data primary and secondary analysis was carried out. Primary data collection comprised of identification of smart parameters and their respective indicators by discussion with professionals. Opinion survey was also carried out and the frequency index of parameters was also found. Opinion survey of professionals was carried out through questionnaire survey. Total sample size selected for opinion survey was 40. The questionnaire was prepared based on the parameters affecting the development of smart city. The respondents were required to give a rating based on likert scale. The rating varied from 5 (very high) to 1(very low). Data analysis was carried out for verification of frequency index through Cronbach's formula and then generating smart index through factor analysis method using SPSS software. The generated smart index would indicate the relative importance of each of the identified factors affecting the development of the smart city under study.

IV. CASE ANALYSIS

Primary analysis was carried out for ranking of indicators which depicts importance of smart indicators lying under respective smart parameters. Cronbach's Alpha test was carried out for reliability values of frequency index which gives double assurance about smart parameters ranking. Further analysis was carried out by factor analysis through SPSS software. Factor analysis was used to identify the most important parameters affecting the development of a smart city.

Fig. 3 shows the general parameters affecting the development of smart city. It has been observed that "infrastructure improvement" has a maximum frequency index of 0.77 followed by "financial gain for cities" and be considered as the most important parameter affecting "financial gain for companies" with frequency index of the development of the smart city and can be given first 0.72 and 0.69 respectively.

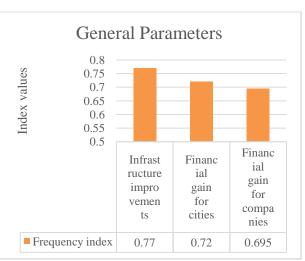


Fig.3. General Parameters Affecting Smart City Development

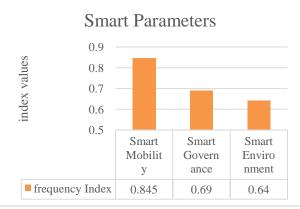


Fig.4. Smart Parameters Affecting Smart City Development

Fig. 4 shows the smart parameters affecting the development of a smart city. It has been observed that "smart mobility" has the maximum frequency index of 0.845 followed by "smart governance" and "smart environment" with frequency index of 0.69 and 0.64 respectively.

The values of "Cronbach's alpha" and "Mean frequency index" as obtained from the analysis are presented in Table 5. The ranking of the parameters are also presented in Table 5.

According to the analysis presented in Table 5, the value of "Conbach's alpha" is maximum (0.88) and also the value of "Mean frequency index" is maximum (0.753) for for "smart infrastructure". Thus "smart infrastructure" can rank.

International Advanced Research Journal in Science, Engineering and Technology

IARJSET

ISO 3297:2007 Certified

Vol. 3, Issue 12, December 2016

Table 5. Comparison of Smart Parameters

Parameters	Cronbach's Alpha	Mean of Frequency Index	Rank
Smart Mobility	0.86	0.745	2
Smart Governance	0.84	0.740	3
Smart Economy	0.79	0.731	5
Smart People	0.80	0.745	3
Smart Environment	0.81	0.735	4
Smart Living	0.81	0.735	4
Smart Infrastructure	0.88	0.753	1
Sector Ranking	0.77	0.721	6

second, third, fourth, fifth and sixth respectively.

Factor analysis has also been used to compute KMO effectively the smart city parameters considered for study values and Extraction Values (EV) of the different smart would contribute to the development of "Ahmedabad city parameters considered under study. Smart Impact Smart City". Index (SII-KMO) and Smart Inpact Index (SII-EV) has

Similarly depending upon the values of "Conbrach's been generated from the obtained values of KMO test and alpha" and "Mean frequency index" "smart mobility", EV for the smart city parameters. Generally the mean of "smart governance", "smart environment & smart living", the obtained values can be considered as the "Index "smart economy" and "sector ranking" can be given rank values" The values of KMO test, EV, Smart Impact Index (SII-KMO) ans Smart Impact Index (SII-EV) are presented in Table 6. This SII would indicate how

Table 6. Smart Impact Index Values of Ahmedabad

Parameters	KMO Test Value	Mean of Extraction	Smart Impact Index	Smart Impact
		values (EV)	(SII-KMO)	Index (SII-EV)
Smart Mobility	0.507	0.780		
Smart Economy	0.527	0.729		
Smart Environment	0.588	0.949		
Smart People	0.491	0.696		
Smart People	0.622	0.78		
Smart People	0.596	0.743	0.588	0.765

V. CONCLUSION

After carrying out adequate study for identifying [1] parameters which are equally significant in comparison to Information & Communication Technology (ICT), it has [2] been observed that "smart infrastructure", "smart mobility", "smart governance", "smart environment & smart living", "smart economy" and "sector ranking" are [3] some major parameters that can be considered as equal or even more significant to that of parameters related to ICT [4] for development of smart city. According to the analysis "smart infrastructure" appears to be the most significant followed by "smart mobility", "smart governance", "smart environment & smart living", "smart economy" and [5] "sector ranking".

The computed values of Smart Impact index (SII-KMO) and SII-EV for Ahmedabad are 0.588 and 0.765 respectively. As both these values are greater than 0.5 they are adequately significant. Thus the smart city parameters considered for this study which are beyond the parameters [7] directly pertaining to ICT have adequately high significance in development of a smart city.

REFERENCES

- Angelidou, M., (2015). "Smart cities: A conjuncture of four forces". Journal of International Planning and Development, Vol-47, pp.95-106.
- D.M. and Anguluri, R., (2014). "Conceptual Ahmed. Understanding of Smart Cities.", International Journal of Science and Research Vol-3(12), pp.1470-1473.
- Belanche D., Casaló V. and Orús C. (2015). "City attachment and use of urban services : Benefits for smart cities." Theoretical and Empirical Researches in Urban Management, Vol-50, pp.75-81
- Chourabi, H., Nam, T., Walker, S., Gilgarcia, J.R., Mellouli, S., Nahon, K., Pardo, T.A., Scholl, H.J., Nahon, K., (2012).' Understanding Smart Cities: An Integrative Framework." 2012 45th Hawaii International Conference on System Sciences, pp.2289-2297.
- Halepoto, I.A., Sahito, A.A., Uqaili, M.A., Chowdhry, B.S., (2015). "Multi-criteria assessment of smart city transformation based on SWOT analysis". 5th National Symposium on Information Technology: Towards New Smart World, Vol-1, pp.1-6.
- [6] Nam, T., Pardo, T. A. (2011). "Conceptualizing smart city with dimensions of technology, people, and institutions." Proceedings of the 12th Annual International Digital Government Research Conference on Digital Government Innovation in Challenging Times, Vol-2, pp.282-291.
- Zubizarreta I., Seravalli, A. and Arrizabalaga S., (2015) "Smart City Concept: What It Is and What It Should Be", Journal of Urban Planning & Development, ASCE, Vol-5, pp. 1-8.